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Abstract

We present an approach to add true fine-scale spatio-
temporal shape detail to dynamic scene geometry cap-
tured from multi-view video footage. Our approach exploits
shading information to recover the millimeter-scale surface
structure, but in contrast to related approaches succeeds un-
der general unconstrained lighting conditions. Our method
starts off from a set of multi-view video frames and an ini-
tial series of reconstructed coarse 3D meshes that lack any
surface detail. In a spatio-temporal maximum a posteri-
ori probability (MAP) inference framework, our approach
first estimates the incident illumination and the spatially-
varying albedo map on the mesh surface for every time in-
stant. Thereafter, albedo and illumination are used to es-
timate the true geometric detail visible in the images and
add it to the coarse reconstructions. The MAP framework
uses weak temporal priors on lighting, albedo and geometry
which improve reconstruction quality yet allow for temporal
variations in the data.

1. Introduction

Recent advances in computer vision have made it possi-
ble to reconstruct dynamic scenes from the real world into
3D mesh representations (e.g., [20, 7, 6, 4]). This is done by
capturing the scene from multiple synchronized video cam-
eras and building the 3D shape from photometric cues, with
the requirement that the reconstructions are geometrically
and topologically consistent over time. These 3D shapes
show plausible deformations up to medium scale detail, but
often lack true detail at the finest level. As an example, a
static laser-scan can be deformed to mimick the motion of
the real scene, but any fine scale detail thus obtained ap-
pears baked into the surface in the rest of the frames and
does not capture the soft wrinkles on clothes and skin as
can be observed from the images [20, 7] (Fig. 1(d)). Some
approaches attempt to reconstruct such detail through multi-
view stereo from scratch or stereo-based refinement, but
even then the detail in reconstructions is limited.

In this paper, we propose a method that exploits knowl-
edge about how a scene is lit and how it appears shaded in
images to refine captured dynamic scene geometry. Certain
previous approaches have exploited shading and photomet-
ric stereo cues for capturing shape detail, for instance for
facial performance capture [4, 23]. However, they required
controlled studio lighting through calibrated colored lights
or a light stage, and made additional restrictive assumptions
about the scene, such as that surface albedo is constant [11].
In contrast to these past methods, in this paper, we propose
a passive shape refinement method that attempts to recon-
struct highly detailed spatio-temporally coherent 3D geom-
etry under general illumination conditions (Fig. 1(c)).

We accept as input a sequence of multi-view images cap-
tured from a set of synchronized and calibrated cameras.
Considering the state of the art in marker-less 3D motion
capture systems (e.g., [10, 6]), we also assume that tem-
porally coherent 3D meshes were reconstructed that lack
any fine shape detail. We consider the estimated motion be-
tween the meshes to be accurate only up to a coarse level.
From this input, we try to capture high quality surface de-
tail such as folds and deformation of human body or cloth.
For every time step of video, we explicitly estimate the in-
cident illumination in the scene based on the reconstructed
shape, make an estimate of the albedo distribution on the
surface, and then use this information together with the
lighting equation to recover the fine-grained structure and
orientation of points on the surface. We assume a Lam-
bertian model of reflection where incident lighting is given
by an environment map that is parameterized in the spher-
ical harmonic domain [17], and where surface properties
are given by a spatially-varying albedo map. We mathe-
matically formulate this in a maximum-a-posteriori (MAP)
estimation framework, where we enforce a soft temporal co-
herency in estimated lighting, albedo and refined geometry.
This way, also the environment map, and surface albedo can
change over time within reasonable bounds, e.g., when a
subject walks along a room with several distributed lights,
or when shifting apparel changes the albedo of a surface
point over time. Our major contributions in this paper are
as follows.
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Figure 1. Shading based Shape Refinement : (a) Captured image. (b) Smooth model obtained by tracking. (c) Our result of spatio-temporal
shape refinement. (d) High-resolution geometry of a laser scan transferred by tracking, whose baked-in detail does not correspond to (a).

1. We provide a method for adding spatio-temporally
coherent millimeter scale surface geometry to coarse
dynamic 3D scene models captured from multi-view
video under general illumination.

2. We reconstruct time-varying incident illumination,
time-varying and spatially varying surface albedo,
and time-varying geometry detail, without using en-
gineered lighting conditions.

3. We exploit the spatio-temporal information in the
scene through soft temporal priors, which improves re-
construction quality but permits variations in the data.

We have tested our approach on a variety of real-world
scenes and show quantitatively and qualitatively that it is
able to recover fine-scale dynamic shape detail that could
not be reconstructed with other methods under similar un-
constrained conditions.

2. Related work
Visual reconstruction of dynamic 3D scenes has been in-

vestigated extensively in the recent past. Many performance
capture and 3D video methods record a dynamic scene with
multiple synchronized video cameras and capture geomet-
rically and topologically consistent dynamic shape models
based on photometric image cues, such as silhouettes. Vla-
sic et al. [20] proposed a method to track a mesh fit with
a skeleton using multi-view silhouettes. Gall et al. [10]
track a skeleton and mesh-based surface deformations us-
ing silhouettes and point features. Other approaches track
a skeleton-less deformable mesh model [7] or a set of sur-
face patches [5, 6], and can handle more general shapes and
topologies. The above methods sample photometric infor-
mation in the captured images only sparsely - by consider-
ing point features or silhouettes - and thus the reconstructed
meshes capture true shape detail only coarsely. Some of
these approaches deform an initial laser scan along the dy-
namic scene, where fine-scale static detail is permanently
embossed onto the moving surface but not actually captured
from images (e.g. [20, 7], see Fig. 1(d) for inspection).

Figure 2. Overview - Input to shape refinement at frame t : (a)
Lighting estimate at t-1 (b) Surface albedo map at t-1 (c) Detailed
surface geometry at t-1 (d) Coarse tracked model at t (e) multi-
view images at t. The two steps of our method : (A) lighting and
albedo estimation. (B) Recovery of high frequency shape detail.

Multi-view stereo can overcome some of these limita-
tions and capture shape detail more densely also for dy-
namic scenes, e.g. in the context of facial performance cap-
ture [4, 9]. However, in untextured regions stereo-based
shape estimation and tracking are unreliable, and necessary
regularization suppresses detail. In this paper, we estimate
lighting and albedo under general illumination, and then use
shading to capture true dynamic detail even if texture ap-
pears uniform.

In the past, photometric stereo or reflectance estimation
approaches have exploited shading information in images
captured under engineered controlled lighting conditions.
Theobalt et al. [19] use multi-view performance capture un-
der calibrated lighting to estimate surface normals and ma-
terial properties (BRDFs) of a human. Ahmed et al. [1]
integrate these normal fields to obtain true dynamic surface
deformation. Wenger et al. [22] deploy the light stage -
a time-multiplexed lighting set up to integrate images taken
under several lighting conditions into a single 3D mesh with
material properties (BRDF). Vlasic et at [21] use a multi-
view video captured in a light-stage to capture detailed ge-
ometry of a moving human by means of photometric stereo.
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Hernandez et al. [11, 12] develop a cheaper system for es-
timating high quality 3D geometry (but not the BRDF) by
capturing the scene under a few colored lights. Nehab et al.
[15] refine geometry obtained from laser-scans using pho-
tometric normals. Although with such methods high quality
geometry is captured, the algorithms are constrained by re-
quiring controlled lighting systems and by making restrict-
ing assumptions about the scene, e.g. that the surface has
constant albedo. In contrast, our approach operates un-
der general uncontrolled lighting and can handle surfaces
with spatially-varying albedo. Related to our idea is the
approach by Popa et al. [16] who synthesize wrinkles on
captured coarse geometry by finding shading features in
images. However, their approach does not perform a true
geometric reconstruction like ours, but uses a heuristic to
synthesize bumps near shadig gradients.

A prerequisite for our shape refinement strategy is a new
approach for estimation of incident illumination which cap-
italizes on the recent literature on modeling the irradiance
of a Lambertian scene through spherical harmonics [3, 17].
Various methods for static 3D surface reconstruction have
been proposed that are based on these advances. Basri et
al. [2] propose a photometric stereo method that uses im-
ages taken under multiple unknown lighting situations. Wu
et al. [24] propose a method that accepts multi-view im-
ages of a static object with constant albedo under single
lighting. More general reflection models have also been
considered for static scenes [26, 25]. It is possible to em-
ploy such methods of static shape refinement on each frame
of a sequence and reconstruct the fine detail of the shape
from shading. However, such reconstructions would suffer
from temporal flicker. In contrast, we propose a method
that implicitly produces a flicker-free reconstruction by ex-
ploiting knowledge on the dynamic scene motion. Using
weak temporal priors, our method estimates time-varying
general illumination, as well as spatially and temporally
varying albedo to ultimately reconstruct the dynamic shape
with rich fine-scale detail.

3. Dynamic shape refinement
We assume that a performance capture method was em-

ployed to obtain coarse mesh reconstructions at each time
frame that lack true surface detail. We use the approach of
Gall et al. [10] that starts from a smoothed static model of
the person of around 5000 vertices (can be obtained through
a static laser scan or shape-from-silhouettes) which it de-
forms to follow the motion in the scene. But any other such
method reviewed in Sec. 2 can be used for this step. These
spatio-temporally coherent meshes and the multi-view im-
ages captured under general unknown illumination form the
input to our method. From this input, we perform spatio-
temporal surface refinement at each frame to recover the
high frequency geometry component by looking at shad-

ing cues. For refinement, we use a finer tessellated version
of the coarse tracked geometry (vertex count increased to
80000), where a displacement for each vertex is found. In
the rest of the paper, we refer to the coarse estimates of ver-
tex positions and normals given by the performance capture
method as low freq and the refined vertex positions and nor-
mals output by our method as high freq. We perform this
refinement successively at each frame to reconstruct the en-
tire sequence.

Shading in the scene is generally an interaction result
of lighting, material and geometry, which is described by
the rendering equation [13]. In the general reconstruction
case, all these three components are unknown. To make the
problem tractable, we assume the surface to be Lambertian
and employ spherical harmonics (SH) to represent the gen-
eral lighting. So our refined model has three components -
SH lighting coefficients, albedos and surface geometry (or
positions of vertices {xu}). We formulate the problem of
dynamic shape refinement as estimating these three compo-
nents ({lti}, {ρtu}, {xtu}) at a given frame using these esti-
mates in the previous frame ({lt−1i }, {ρt−1u }, {xt−1u }) and
the coarse performance capture model in the current frame
({x̂tu}). We develop a two-step algorithm that is visualized
in Fig. 2. In the first step, we estimate the lighting coeffi-
cients and the surface albedos ({lti , ρtu}) at a given frame.
These are estimated based on the lighting and albedos of
the previous frame and the current tracked coarse model. In
the second step, based on the estimated lighting and albe-
dos, as well as the previous refined model, the high quality
geometry at the current frame ({xtu}) is recovered based on
shading cues. We formulate these two steps as two MAP
estimation problems with the appropriate priors, as detailed
later in this section.

3.1. Shading model

Using SH to represent the general lighting, the image
formation model is described as (see [17, 3] for details) :

B(x) =
n2∑
i=1

ρxliYi, (1)

where B(x) is the reflected radiance at surface point x, ρx
is the albedo at that point, {li} are SH coefficients of the
visible lighting for that point (visibility towards lighting is
calculated explicitly for each vertex), Yi is the SH function
determined by the surface normal and n is the number of
considered SH frqeuency bands (in our experiments, we use
n = 5 bands). We consider scenes captured using color im-
ages with RGB channels, so the albedo is a 3-vector con-
taining these three components. The above equation, along
with the equations derived in the following hold true for all
the color channels.
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Figure 3. Lighting estimation : (a) Typical light-source distribution
for real-world datasets we used. (b) Ground-truth lighting for syn-
thetic data - SH approximation of the incoming radiance displayed
onto a cubemap. (c) The lighting estimated by our algorithm

Figure 4. Stages for albedo estimation : (a) Input textured model.
(b) Initial guess for albedos, based on the previous frame’s light-
ing. (c) Albedo clusters detected on (b) through segmentation. (d)
Detected outliers marked in red. (e) The final albedo map.

3.2. Lighting and albedo estimation

In the general case, the albedo varies across surface
points. In an extreme case of high frequency texture with
many surface albedos, solving for all the albedos and the
incident illumination from coarse geometry is infeasible.
However, in most cases it is reasonable to assume that the
albedo space is restricted and that the surface comprises of
patches of piecewise uniform albedo. For instance, most
pieces of apparel have a dominant base color, as seen in
Fig. 4. With a restricted albedo space we can simultane-
ously solve for albedo and lighting at each time step. Other-
wise there would be an insufficient number of surface points
(or shading samples) of similar reflectance seen under dif-
ferent orientations, which is needed to infer the incident il-
lumination.

In our method, we first obtain an initial guess for the
albedo of each vertex by making two assumptions - (i) that
the lighting of the previous frame applies approximately to
the current frame (ii) an approximation to the high freq sur-
face normals at the current frame can be obtained by trans-
fering the high freq normals of the previous frame through
the low freq motion estimates given by the performance cap-
ture method (described in greater detail in section Sec. 3.3).
Using these initial guesses, we solve for the albedos at the
current time step (i.e. an individual albedo for every mesh
vertex) using Eq. (1) (Fig. 4(b)). Subsequently, we solve a
global energy minimization problem to refine these albedo
values over the entire shape, and to estimate the lighting
conditions at the current frame.

Following our assumption about piecewise uniform
albedo in the scene, we employ an image segmentation al-
gorithm [8] to segment the albedo map into surface parts
of approximately constant albedo (see Fig. 4(c)). As crite-
ria for segmentation, we provide the minimal size for each
segment and the minimal difference in albedos across two
segments (same parameters for all time steps).

Assuming we have k different albedo parts, we formulate
a global problem that updates these albedo values as well as
computes the lighting coefficients at the current frame. This
is defined as a finding a MAP solution that maximizes the
likelihood:

P (lt,ρt|It) ∝ P (It|lt,ρt)P (lt)P (ρt), (2)

where lt = {lt1, . . . ltn2} is the n − 1 order SH coefficients
for the lighting, ρt = {ρt1, . . . ρtk} represents the albedos
for segmented parts. So the cost function we define is:

ψ(lt,ρt) = φ(It|lt,ρt) + φ(lt) + φ(ρt), (3)

where φ(It|lt,ρt) is the shading error, φ(lt) and φ(ρt) are
the priors for lighting and albedo in the current estimate.
Specifically, as albedo segmentation may contain outliers,
we use `1 norm to define the shading error, i.e.

φ(It|lt,ρt) = ‖I(x)−B(x)‖1. (4)

We require the incoming light energy and the albedo of the
surface points in the current frame to be not too different
from those of the previous frame, which yields the priors:

φ(lt) = λ0(
n2∑
i=1

(lti)
2 −

n2∑
i=1

(lt−1i )
2
)2, (5)

φ(ρt)) = λ1

k∑
u=1

(ρtu − ρt−1u )2. (6)

With the lighting and albedo estimated, we detect the
outliers in the albedo segmentation for each part. Examples
of outliers are surface points under cast shadows (where the
first bounce illumination assumption is violated) or where
the surface is non-Lambertian. To detect outliers, we cal-
culate the median absolute deviation [18] for each uniform
albedo part as

σi = α ∗ medianx∈S(i)‖I(x)−B(x)‖1, (7)

where S(i) represents the uniform-albedo part i and α =
1.4826 is the theoretical correction factor [18]. If ‖I(x) −
B(x)‖1 > βσ, the surface point is considered as an outlier
and will be optimized only by relying on the shape prior
afterwards (in our experiments, we have set the penalizing
threshold β = 2.5). We refine the lighting and albedo esti-
mates again with these outliers excluded by solving Eq.(3)
(Fig. 4(e)).
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Figure 5. Handling errors in estimated geometry : (a) the geometry
of the forearm is not estimated fully correctly; using an `2-metric
shading term this yields to artifacts around the visibility shadow
on the torso. (b) The `1-metric shading term prevents this artifact.

3.3. Recovery of high-frequency shape detail

Now, the lighting and the albedos for the current frame
are known. The next step is to estimate the fine-scale ge-
ometry of the current frame based on the images, the coarse
shape model at the current frame, and the refined model of
previous frame. This can also be defined as a MAP prob-
lem, the likelihood of which is:

P (gt|It, gt−1) ∝ P (It|gt)P (gt|gt−1), (8)

where gt and gt−1 are the geometry of the current frame
and the previous frame, and It are the current captured im-
ages. The cost function to optimize is thus

ψ(g) = φ(It|gt) + φ(gt|gt−1), (9)

where φ(It|gt) is the shading error and φ(gt|gt−1) is the
prior for the current geometry based on the previous frame’s
geometry.

The shading error measures the difference between the
observed and predicted irradiances at each vertex according
to the shape estimate. We are not comparing irradiances,
since that comparison is less robust if the assumptions on
lighting and image-formation are not exactly met. When
evaluating the energy, we use grey-scale intensities, instead
of treating the three color channels separately. Our shading
error is defined as :

φ(It|gt) =
∑
i

∑
j∈N(i)

∑
c∈Q(i,j)

|rc(i, j)− s(i, j)|, (10)

where i and j are vertex indices,N(i) is the set of the neigh-
bors of the i-th vertex, c is the camera index, Q(i, j) is the
set of cameras which see vertex i and j, and r(i, j) and
s(i, j) are the measured image gradient and predicted shad-
ing gradient, respectively.

An important step to solving this equation is determin-
ing Q(i, j), which depends on the current estimate of the
3D geometry (vertex positions xi). A discrepency between
the hypothesized scene geometry and the real geometry will
lead to wrong assumptions about what surface point is vis-
ible from what camera. Such errors translate into wrongly
evaluated shading cues, and thus geometry artifacts. Fig. 5

Figure 6. Importance of temporal shape prior: (a) Captured image.
(b) Reconstructed model using no temporal shape prior (OneFrm
method). (c) Improved reconstructed model using temporal shape
prior.

shows one such error that often arises around a visibility
shadow that more frontal geometry casts onto more distant
geometry.

Wu et al. [24] have recently proposed a shading error
metric similar to Eq. (10) for the reconstruction of static
3D scenes. However, they assume a much denser set of
input camera views (> 20) and better initial geometry to
start with. In contrast, performance capture methods typ-
ically use only 8-12 cameras, and reconstruct a geometry
that is only accurate up to a coarse scale. This makes the er-
rors in determiningQ(i, j) more damaging for our situation,
and demands explicit consideration. In order to implicitly
downweight the influence of these errors, without having to
resort to more complex visibility computation, we employ
the robust `1 metric in Eq. (10) in contrast to the `2 metric
used by [24] (Fig. 5).

The prior φ(gt|gt−1) enforces weak temporal co-
herency by requiring the the current high freq normal field
not to be much different from the one in the previous time
step transformed into the current time step :

φ(gt|gt−1) = λ2
∑
i

∑
u,w

[n̂t
i · (xt

u − xt
w)]

2, (11)

where xt
u and xt

w are the positions of vertices u and w,
vertices u w and i belong to the same mesh triangle, and
n̂t

i is the propagated surface normal at vertex i based on the
already reconstructed high freq normal field of the previous
frame. This propagation is done by estimating the relative
transformation Ri of the low freq normals between the two
frames, using a method similar to [15], such that :

ñti = Riñ
t−1
i , (12)

where ñti and ñt−1i are the low freq normals of the current
frame and the previous frame, respectively. Then we ob-
tain the propagated fine-scale normal of current frame by
transforming the high freq normal of previous frame as:

n̂t
i = Rin

t−1
i , (13)

where nt−1
i is the normal of the refined model of previous

frame. We now obtain an initialization for the fine geometry
at the current frame by displacing vertex positions so as to
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align with the propagated normal field {n̂t
i}. Starting from

this initial estimate, the final refined vertex positions (and
normals) are found by optimizing Eq. (9).

In our shape refinement procedure, we give the shad-
ing term less influence when optimizing regions with low
albedo. This is because such regions suffer more from cam-
era noise. We thus include a weighing term λ2 in the shape
prior Eq. (11) :

λ2 = β1(2− ρu/max
i

(ρi)), (14)

where ρu is the albedo for the vertex u, which is to be opti-
mized, and maxi(ρi) is the maximum albedo of the current
model.

Since optimizing the positions of all the vertices simul-
taneously might take too long, we adopt a patch-based op-
timization strategy that divides the surface into a set of
patches and optimizes on the set of vertices belonging to
each patch sequentially. This arrives at a local optimum
that is usually quite robust.

3.4. Reconstruction of shape and lighting for the
first frame

For the first time step, we can not employ our spatio-
temporal reconstruction scheme as information from the
prior time instant is not available. Instead, we employ a
static refinement method (referred to as OneFrm) that only
uses image and coarse model information for the one time
step under consideration. To this end, we first segment the
shape into parts of uniform color, and assume that these are
regions of uniform albedo. We then estimate lighting co-
efficients and albedo values using our method of Sec. 3.2,
but without temporal priors. Next, we recover the high fre-
quency surface detail using a spatial smoothness prior in
Eq. (9) (instead of the shape prior from the previous frame)
that requires neighboring surface vertices in a one-ring to
have similar positions. This gives a reasonable estimate for
the first frame. In later frames, however, we always resort to
the full spatio-temporal scheme which is clearly better than
using the static scheme sequentially to all time steps (see
Fig. 6 and Sec. 4).

4. Experiments
We test our algorithm on one synthetic sequence for

quantitative evaluation, and 4 realistic captured sequences
for qualitative validation. We use the performance capture
method of Gall et al. [10] that uses an initial smooth mesh
of around 5000 vertices to track the performance. We ob-
tained this by smoothing a static laser scan of the performer
(for real data,e.g.,Fig. 1(b)) or by smoothing a ground truth
input mesh (for synthetic data, Fig. 7(b)). Refinement is
computed on the 80000 vertex versions of the coarse mod-
els (see Sec. 3).

Figure 7. Shape refinement results on synthetic data : (a) One of
the rendered images that we provided as input. (b) The smooth
low-freq model obtained by tracking. (c) Our spatio-temporal
shape refinement result (d) Ground-truth model (e) Difference
from groundtruth for (b) in the inset region (color-coded error w.r.t.
ground truth - red=high). (f) Difference from groundtruth for (c).

Synthetic scene We rendered a synthetic motion se-
quence of a female dancer of length 60 frames from 12 cir-
cularly arranged virtual cameras of resolution 1296 × 972.
Surface albedo distribution was manually specified (5 re-
gions of similar albedo), and the scene was rendered using a
single area light from an overhead position (Fig. 7(a) shows
one rendered frame).

We applied the performance capture method to all the
frames; we then performed static refinement (OneFrm) on
the first time step and spatio-temporal refinement on all sub-
sequent ones. Fig. 7(c) and Fig. 7(d) show the refined model
and the ground truth, respectively.

We compare the accuracy w.r.t ground truth of albedo
estimation between the OneFrm and spatio-temporal refine-
ment methods in Fig. 8(a). We use the normalized correla-
tion coefficient to compare the estimates. This figure clearly
demonstrates that by using spatio-temporal information for
estimating lighting and albedo values, higher accuracy is
achieved. Fig. 3 shows a visual comparison of our lighting
estimate with the ground truth, illustrating the high quality
of our estimate (more results in additional document).

We also evaluated the accuracy of the reconstructed
high-resolution geometry by our algorithm. In Fig. 8-(b,c),
we show the errors in normal orientation and position as
compared to the ground truth. Here, we also compare our
method to the OneFrm method, and to the coarse tracked
model as the baseline. These figures illustrate that our
method reliably captures high-frequency shape detail that
is not present in the coarse model. The refinement through
OneFrm is understandably less accurate - especially in esti-
mating normal orientations. The same can be visualized in
Fig. 6(b,c) as spatio-temporal refinement better brings out
high frequency shape details. Using the OneFrm method
independently at each frame also produces temporal flicker
which is absent in the reconstructions of our method. We in-
vite the readers to see the comparison in the accompanying
video.
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Figure 8. Quantitative evaluation on synthetic data : (a) Surface albedo estimate accuracy. (b) Errors in the estimated normals. (c) Errors in
the estimated vertex positions (normalized using the diameter of the bounding sphere of the model). Our spatio-temporal shape refinement
(red curve) yields the best results.

Figure 9. Qualitative comparison with stereo refinement : (a) Cap-
tured image. (b) Our shape refinement results. (c) Stereo-based
shape refinement of Liu et al [14]

Figure 10. Qualitative evaluation on real datasets : (a,c) Captured
image. (b,d) Our shape refinement results. Our refinement method
brings out fine-scale detail from images with fidelity. * Please look
at the accompanying video for more results *

Real-world scenes We validate our algorithm on four real
captured sequences, showing 3 different subjects in differ-
ent types of apparel. All sequences where captured indoors
with non-engineered lighting, i.e. several area light sources
and spot lights on the ceiling (Fig. 3-a). The results of shape
refinement on certain frames are provided within this paper.
The high fidelity and dynamics of reconstructions is also
shown in the supplemental video. The first two sequences
show an actress wearing a sweater and jeans performing
different motions, namely walking (Fig. 9) and kicking
(Fig. 1), the third shows another actress in a skirt perform-
ing samba dancing (Fig. 10-a,b), and the fourth shows an
actor executing a Capoeira move (Fig. 10-c,d). For the first
two sequences, 12 cameras at a resolution of 1296×972 pix-
els are used to record at a frame rate of 44 fps. For the latter
two sequences that were provided to us by the authors of [7],
8 cameras running at the resolution of 1004 × 1004 pixels
are used. We show the results in Fig. 10. In all cases, our
method recovers the true dynamic detail seen in the images
reliably. Our reconstructions capture the true time-varying
detail visible in input images, as opposed to the deforming
embossed static shape detail seen from performance cap-
ture methods that deform a (unsmoothed) static laser scan
(Fig. 1(d)). In Fig. 9(c), we show a qualitative comparison
of our method with a stereo based reconstruction method of
Liu et al. [14]. It can be observed that our method brings
out finer detail than stereo.

Runtime performance We measured the runtimes of the
various algorithmic components on a standard PC with a
2.66 GHz Core 2 Quad processor. Performance capture us-
ing [10] takes on average 5 − 10 s per time step. Per ver-
tex visibility computation (one visibility environment map
per vertex) takes around 10 minutes per frame. The shape
refinement step takes around 6 minutes per frame. Since
these three steps can be executed in parallel for processing
sequences, the runtime is decided by the visibility compu-
tation step (10 minutes per frame).
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Limitations On parts of the shape where image resolution
is limited (for example, on the faces of the actors), our ap-
proach cannot completely recover the fine-scale detail. Re-
construction quality also depends on the tracking accuracy
of the performance capture approach; large tracking errors
already in the coarse model will lead to incorrect refine-
ments. In future, we plan to investigate ways to improve
low frequency tracking accuracy through our lighting esti-
mation and shape refinement model. Another limitation is
that we assume Lambertian surfaces; as such, our algorithm
fails to obtain the high-frequency detail on non-Lambertian
parts of the shape. Also, the assumption that the surface
can be clustered into regions of uniform albedo is restrict-
ing and can be violated in some scenes. If too many differ-
ent materials are present, the space of shading samples may
not be sufficient in order to estimate albedo and lighting at
the same time. In such cases, they may have to be spatio-
temporally solved over more time instants which makes the
approach more vulnerable to tracking errors.

5. Conclusion
In this paper, we proposed a general method for cap-

turing high-quality time-varying surface detail by analyz-
ing the shading information of multi-view video sequences
captured under general illumination. We make minimal as-
sumptions about the nature of the scene, the type of mo-
tion or the lighting requirements. Starting off from coarse
per time-step reconstructions, we recover incident illumina-
tion, surface albedo and fine-scale surface detail in a spatio-
temporally coherent way. Our reconstruction framework
uses weak temporal priors to boost reconstruction quality,
but it is still able to allow for and capture temporal varia-
tions in lighting, albedo and shape.
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